Back to Search
Start Over
Study on Graphene Oxide-Modified Polyacrylonitrile Hollow Fiber Membrane.
- Source :
- Integrated Ferroelectrics; 2020, Vol. 207 Issue 1, p62-74, 13p
- Publication Year :
- 2020
-
Abstract
- In this paper, a multilayer diazo resin-graphene oxide/polyacrylonitrile composite membrane was prepared by layer-by-layer self-assembly and UV-induced modification of commercial polyacrylonitrile (PAN) hollow fiber membranes grafted with diazo resin (DR) and graphene oxide (GO). Scanning electron microscopy (SEM), infrared spectroscopy, contact angle, thermogravimetric analysis (TG), water flux and adsorption properties of heavy metals were studied. The results showed that diazo resin (DR) and graphene oxide (GO) were successfully grafted onto PAN membranes by layer-by-layer self-assembly. Carbonyl and carboxyl groups appeared on the surface of the modified PAN membranes; layer-by-layer self-assembly modification did not destroy the original morphology of PAN membranes, resulting in smaller pore size and higher surface roughness; hydrophilicity of the modified PAN-(DR-GO)<subscript>3</subscript> membranes. The contact angle of pure water decreases from 87.8 degrees to 55.5 degrees, and the water flux increases from 733.30 g.m<superscript>−1</superscript>.h<superscript>−1</superscript> to 1250.48 g.m<superscript>−1</superscript>.h<superscript>−1</superscript>. The thermo gravimetric curves of PAN films before and after modification did not change significantly, and the PAN films before and after modification had good thermal stability. The modified PAN membrane can achieve adsorption equilibrium in a relatively short time, and has good adsorption performance for heavy copper ions, with the adsorption rate as high as 92%. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10584587
- Volume :
- 207
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Integrated Ferroelectrics
- Publication Type :
- Academic Journal
- Accession number :
- 143636106
- Full Text :
- https://doi.org/10.1080/10584587.2020.1728665