Back to Search
Start Over
Tykhonov well-posedness of split problems.
- Source :
- Journal of Inequalities & Applications; 6/3/2020, Vol. 2020 Issue 1, p1-29, 29p
- Publication Year :
- 2020
-
Abstract
- In (J. Optim. Theory Appl. 183:139–157, 2019) we introduced and studied the concept of well-posedness in the sense of Tykhonov for abstract problems formulated on metric spaces. Our aim of this current paper is to extend the results in (J. Optim. Theory Appl. 183:139–157, 2019) to a system which consists of two independent problems denoted by P and Q, coupled by a nonlinear equation. Following the terminology used in literature we refer to such a system as a split problem. We introduce the concept of well-posedness for the abstract split problem and provide its characterization in terms of metric properties for a family of approximating sets and in terms of the well-posedness for the problems P and Q, as well. Then we illustrate the applicability of our results in the study of three relevant particular cases: a split variational–hemivariational inequality, an elliptic variational inequality and a history-dependent variational inequality. We describe each split problem and clearly indicate the family of approximating sets. We provide necessary and sufficient conditions which guarantee the well-posedness of the split variational–hemivariational inequality. Moreover, under appropriate assumptions on the data, we prove the well-posedness of the split elliptic variational inequality as well as the well-posedness of the split history-dependent variational inequality. We illustrate our abstract results with various examples, part of them arising in contact mechanics. [ABSTRACT FROM AUTHOR]
- Subjects :
- CONTACT mechanics
NONLINEAR equations
Subjects
Details
- Language :
- English
- ISSN :
- 10255834
- Volume :
- 2020
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Journal of Inequalities & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 143572189
- Full Text :
- https://doi.org/10.1186/s13660-020-02421-w