Back to Search
Start Over
Recombinant Cellular Repressor of E1A-Stimulated Genes Protects against Renal Fibrosis in Dahl Salt-Sensitive Rats.
- Source :
- American Journal of Nephrology; May2020, Vol. 51 Issue 5, p401-410, 10p, 4 Graphs
- Publication Year :
- 2020
-
Abstract
- <bold>Background: </bold>Human cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that attenuates angiotensin II-induced hypertension, alleviates myocardial fibrosis, and improves heart function. However, the role of CREG in high-salt (HS) diet-induced hypertensive nephropathy is unclear.<bold>Methods: </bold>To determine the effects and molecular mechanisms of CREG in HS diet-induced hypertensive nephropathy, we established a hypertensive nephropathy animal model in Dahl salt-sensitive (SS) rats fed a HS diet (8% NaCl, n = 20) for 8 weeks. At week 4 of HS loading, these rats were administered recombinant CREG (reCREG; 35 µg/kg·day, n = 5) and saline (n = 5) via subcutaneously implanted pumps and were also administered the vasodilator hydralazine (20 mg/kg·day, n = 5) in drinking water. We used hematoxylin and eosin staining, Masson's trichrome staining, immunohistochemical labeling, western blotting, RT-PCR, and Tunel staining to determine the signaling pathways of CREG in HS diet-induced hypertensive nephropathy.<bold>Results: </bold>After 8 weeks of HS intake, the Dahl SS rats developed renal dysfunction and severe renal fibrosis associated with reductions of 78 and 67% in CREG expression, respectively, at both mRNA and protein levels in the kidney. Administration of reCREG improved renal function and relieved renal fibrosis. Administration of CREG also inhibited monocyte infiltration and reduced apoptosis in the kidney cells. CREG overexpression upregulated forkhead box P1 expression and inhibited the transforming growth factor-β1 signaling pathway.<bold>Conclusion: </bold>Our study shows that CREG protected the kidney against HS-diet-induced renal damage and provides new insights into the mechanisms underlying kidney injury. [ABSTRACT FROM AUTHOR]
- Subjects :
- RENAL fibrosis
RATS
GENES
WESTERN immunoblotting
DRINKING water
EFFECT of salts on plants
WESTERN diet
PROTEIN analysis
PROTEIN metabolism
SALT
RENAL hypertension
PROTEINS
BIOLOGICAL models
RESEARCH
KIDNEYS
NEPHRITIS
ANIMAL experimentation
RESEARCH methodology
FIBROSIS
APOPTOSIS
MEDICAL cooperation
EVALUATION research
COMPARATIVE studies
MICE
RECOMBINANT proteins
Subjects
Details
- Language :
- English
- ISSN :
- 02508095
- Volume :
- 51
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- American Journal of Nephrology
- Publication Type :
- Academic Journal
- Accession number :
- 143441962
- Full Text :
- https://doi.org/10.1159/000506411