Back to Search Start Over

Formation of Size and Density Controlled Nanostructures by Galvanic Displacement.

Authors :
Tran, Minh
Roy, Sougata
Kmiec, Steven
Whale, Alison
Martin, Steve
Sundararajan, Sriram
Padalkar, Sonal
Source :
Nanomaterials (2079-4991); Apr2020, Vol. 10 Issue 4, p644, 1p
Publication Year :
2020

Abstract

Gold (Au) and copper (Cu)-based nanostructures are of great interest due to their applicability in various areas including catalysis, sensing and optoelectronics. Nanostructures synthesized by the galvanic displacement method often lead to non-uniform density and poor size distribution. Here, density and size-controlled synthesis of Au and Cu-based nanostructures was made possible by galvanic displacement with limited exposure to hydrofluoric (HF) acid and the use of surfactants like L-cysteine (L-Cys) and cetyltrimethylammonium bromide (CTAB). An approach involving cyclic exposure to HF acid regulated the nanostructure density. Further, the use of surfactants generated monodisperse nanoparticles in the initial stages of the deposition with increased density. The characterization of Au and Cu-based nanostructures was performed by scanning electron microscopy, atomic force microscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. The surface enhanced Raman spectroscopic measurements demonstrated an increase in the Raman intensity by two to three orders of magnitude for analyte molecules like Rhodamine 6G dye and paraoxon. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
10
Issue :
4
Database :
Complementary Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
143367541
Full Text :
https://doi.org/10.3390/nano10040644