Back to Search Start Over

A Comparison of Estimating Crop Residue Cover from Sentinel-2 Data Using Empirical Regressions and Machine Learning Methods.

Authors :
Ding, Yanling
Zhang, Hongyan
Wang, Zhongqiang
Xie, Qiaoyun
Wang, Yeqiao
Liu, Lin
Hall, Christopher C.
Source :
Remote Sensing; 5/1/2020, Vol. 12 Issue 9, p1470, 1p
Publication Year :
2020

Abstract

Quantifying crop residue cover (CRC) on field surfaces is important for monitoring the tillage intensity and promoting sustainable management. Remote-sensing-based techniques have proven practical for determining CRC, however, the methods used are primarily limited to empirical regression based on crop residue indices (CRIs). This study provides a systematic evaluation of empirical regressions and machine learning (ML) algorithms based on their ability to estimate CRC using Sentinel-2 Multispectral Instrument (MSI) data. Unmanned aerial vehicle orthomosaics were used to extracted ground CRC for training Sentinel-2 data-based CRC models. For empirical regression, nine MSI bands, 10 published CRIs, three proposed CRIs, and four mean textural features were evaluated using univariate linear regression. The best performance was obtained by a three-band index calculated using (B2 − B4)/(B2 − B12), with an R<superscript>2</superscript><subscript>cv</subscript> of 0.63 and RMSE<subscript>cv</subscript> of 6.509%, using a 10-fold cross-validation. The methodologies of partial least squares regression (PLSR), artificial neural network (ANN), Gaussian process regression (GPR), support vector regression (SVR), and random forest (RF) were compared with four groups of predictors, including nine MSI bands, 13 CRIs, a combination of MSI bands and mean textural features, and a combination of CRIs and textural features. In general, ML approaches achieved high accuracy. A PLSR model with 13 CRIs and textural features resulted in an accuracy of R<superscript>2</superscript><subscript>cv</subscript> = 0.66 and RMSE<subscript>cv</subscript> = 6.427%. An RF model with predictors of MSI bands and textural features estimated CRC with an R<superscript>2</superscript><subscript>cv</subscript> = 0.61 and RMSE<subscript>cv</subscript> = 6.415%. The estimation was improved by an SVR model with the same input predictors (R<superscript>2</superscript><subscript>cv</subscript> = 0.67, RMSE<subscript>cv</subscript> = 6.343%), followed by a GPR model based on CRIs and textural features. The performance of GPR models was further improved by optimal input variables. A GPR model with six input variables, three MSI bands and three textural features, performed the best, with R<superscript>2</superscript><subscript>cv</subscript> = 0.69 and RMSE<subscript>cv</subscript> = 6.149%. This study provides a reference for estimating CRC from Sentinel-2 imagery using ML approaches. The GPR approach is recommended. A combination of spectral information and textural features leads to an improvement in the retrieval of CRC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
143235831
Full Text :
https://doi.org/10.3390/rs12091470