Back to Search Start Over

Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator.

Authors :
Lux, Oliver
Lemmerz, Christian
Weiler, Fabian
Marksteiner, Uwe
Witschas, Benjamin
Rahm, Stephan
Geiß, Alexander
Reitebuch, Oliver
Source :
Atmospheric Measurement Techniques; 2020, Vol. 13 Issue 4, p2075-2097, 23p
Publication Year :
2020

Abstract

Shortly after the successful launch of the European Space Agency's wind mission Aeolus, co-located airborne wind lidar observations were performed in central Europe; these observations employed a prototype of the satellite instrument – the ALADIN (Atmospheric LAser Doppler INstrument) Airborne Demonstrator (A2D). Like the direct-detection Doppler wind lidar on-board Aeolus, the A2D is composed of a frequency-stabilized ultra-violet (UV) laser, a Cassegrain telescope and a dual-channel receiver to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. In the framework of the first airborne validation campaign after the launch and still during the commissioning phase of the mission, four coordinated flights along the satellite swath were conducted in late autumn of 2018, yielding wind data in the troposphere with high coverage of the Rayleigh channel. Owing to the different measurement grids and LOS viewing directions of the satellite and the airborne instrument, intercomparison with the Aeolus wind product requires adequate averaging as well as conversion of the measured A2D LOS wind speeds to the satellite LOS (LOS*). The statistical comparison of the two instruments shows a positive bias (of 2.6 m s -1) of the Aeolus Rayleigh winds (measured along its LOS*) with respect to the A2D Rayleigh winds as well as a standard deviation of 3.6 m s -1. Considering the accuracy and precision of the A2D wind data, which were determined from comparison with a highly accurate coherent wind lidar as well as with the European Centre for Medium-Range Weather Forecasts (ECMWF) model winds, the systematic and random errors of the Aeolus LOS* Rayleigh winds are 1.7 and 2.5 m s -1 respectively. The paper also discusses the influence of different threshold parameters implemented in the comparison algorithm as well as an optimization of the A2D vertical sampling to be used in forthcoming validation campaigns. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18671381
Volume :
13
Issue :
4
Database :
Complementary Index
Journal :
Atmospheric Measurement Techniques
Publication Type :
Academic Journal
Accession number :
143171279
Full Text :
https://doi.org/10.5194/amt-13-2075-2020