Back to Search Start Over

Excitation dynamics in Photosystem I trapped in TiO2 mesopores.

Authors :
Szewczyk, S.
Białek, R.
Giera, W.
Burdziński, G.
van Grondelle, R.
Gibasiewicz, K.
Source :
Photosynthesis Research; May2020, Vol. 144 Issue 2, p235-245, 11p
Publication Year :
2020

Abstract

Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with a ~ 24-ps lifetime, as measured both by time-resolved fluorescence and transient absorption. The same PSI particles deposited in mesoporous matrix made of TiO<subscript>2</subscript> nanoparticles exhibit significantly accelerated excitation decay dominated by a ~ 6-ps component. Target analysis indicates that this acceleration is caused by ~ 50% increase of the rate constant of bulk Chls excitation quenching. As an effect of this increase, as much as ~ 70% of bulk Chls excitation is quenched before the establishment of equilibrium with the red Chls. Accelerated quenching may be caused by increased excitation trapping by the reaction center and/or quenching properties of the TiO<subscript>2</subscript> surface directly interacting with PSI Chls. Also properties of the PSI red Chls are affected by the deposition in the TiO<subscript>2</subscript> matrix: they become deeper traps due to an increase of their number and their oscillator strength is significantly reduced. These effects should be taken into account when constructing solar cells' photoelectrodes composed of PSI and artificial matrices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01668595
Volume :
144
Issue :
2
Database :
Complementary Index
Journal :
Photosynthesis Research
Publication Type :
Academic Journal
Accession number :
143074290
Full Text :
https://doi.org/10.1007/s11120-020-00730-1