Back to Search
Start Over
Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis.
- Source :
- Nature Communications; 4/24/2020, Vol. 11 Issue 1, p1-14, 14p
- Publication Year :
- 2020
-
Abstract
- Gut microbial dysbiosis is associated with the development of autoimmune disease, but the mechanisms by which microbial dysbiosis affects the transition from asymptomatic autoimmunity to inflammatory disease are incompletely characterized. Here, we identify intestinal barrier integrity as an important checkpoint in translating autoimmunity to inflammation. Zonulin family peptide (zonulin), a potent regulator for intestinal tight junctions, is highly expressed in autoimmune mice and humans and can be used to predict transition from autoimmunity to inflammatory arthritis. Increased serum zonulin levels are accompanied by a leaky intestinal barrier, dysbiosis and inflammation. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate or a cannabinoid type 1 receptor agonist inhibits the development of arthritis. Moreover, treatment with the zonulin antagonist larazotide acetate, which specifically increases intestinal barrier integrity, effectively reduces arthritis onset. These data identify a preventive approach for the onset of autoimmune disease by specifically targeting impaired intestinal barrier function. Intestinal dysbiosis is associated with an ever-growing list of autoimmune diseases. Here the authors show that both mice and humans with autoimmune arthritis can have dysbiosis and barrier leakiness prior to major signs of inflammatory arthritis, and treatment of mice with a zonulin antagonist can limit collagen-induced arthritis. [ABSTRACT FROM AUTHOR]
- Subjects :
- ARTHRITIS
OCCLUDINS
AUTOIMMUNE diseases
CLAUDINS
TIGHT junctions
AUTOIMMUNITY
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 142886743
- Full Text :
- https://doi.org/10.1038/s41467-020-15831-7