Back to Search
Start Over
Multiscale variations of the crustal stress field throughout North America.
- Source :
- Nature Communications; 4/23/2020, Vol. 11 Issue 1, p1-9, 9p
- Publication Year :
- 2020
-
Abstract
- The Earth's crustal stress field controls active deformation and reflects the processes driving plate tectonics. Here we present the first quantitative synthesis of relative principal stress magnitudes throughout North America together with hundreds of new horizontal stress orientations, revealing coherent stress fields at various scales. A continent-scale transition from compression (strike-slip and/or reverse faulting) in eastern North America to strike-slip faulting in the mid-continent to predominantly extension in western intraplate North America is likely due (at least in part) to drag at the base of the lithosphere. Published geodynamic models, incorporating gravitational potential energy and tractions from plate motions or relative mantle flow, successfully predict most large-wavelength stress rotations but not the shorter-wavelength (<~200 km) rotations observed in the western USA. The stresses resulting from glacial isostatic adjustment appear to be much smaller than the magnitude of ambient tectonic stresses in the crust at depth. The authors here present a stress map of the North American crust that gives a new view of dynamics of the continent. The results can be applied to probabilistic seismic hazard analysis and resource development as well as to provide constraints for theoretical models of crustal dynamics. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 142866566
- Full Text :
- https://doi.org/10.1038/s41467-020-15841-5