Back to Search Start Over

Developing Computational Model to Predict Protein-Protein Interaction Sites Based on the XGBoost Algorithm.

Authors :
Deng, Aijun
Zhang, Huan
Wang, Wenyan
Zhang, Jun
Fan, Dingdong
Chen, Peng
Wang, Bing
Source :
International Journal of Molecular Sciences; Apr2020, Vol. 21 Issue 7, p2274, 1p, 3 Diagrams, 5 Charts, 2 Graphs
Publication Year :
2020

Abstract

The study of protein-protein interaction is of great biological significance, and the prediction of protein-protein interaction sites can promote the understanding of cell biological activity and will be helpful for drug development. However, uneven distribution between interaction and non-interaction sites is common because only a small number of protein interactions have been confirmed by experimental techniques, which greatly affects the predictive capability of computational methods. In this work, two imbalanced data processing strategies based on XGBoost algorithm were proposed to re-balance the original dataset from inherent relationship between positive and negative samples for the prediction of protein-protein interaction sites. Herein, a feature extraction method was applied to represent the protein interaction sites based on evolutionary conservatism of proteins, and the influence of overlapping regions of positive and negative samples was considered in prediction performance. Our method showed good prediction performance, such as prediction accuracy of 0.807 and MCC of 0.614, on an original dataset with 10,455 surface residues but only 2297 interface residues. Experimental results demonstrated the effectiveness of our XGBoost-based method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
21
Issue :
7
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
142830622
Full Text :
https://doi.org/10.3390/ijms21072274