Back to Search
Start Over
Odd Star Decomposition of Complete Bipartite Graphs.
- Source :
- AIP Conference Proceedings; 2020, Vol. 2215 Issue 1, p070013-1-070013-5, 5p
- Publication Year :
- 2020
-
Abstract
- Let G<subscript>1</subscript>, G<subscript>2</subscript>, G<subscript>3</subscript>,…, G<subscript>n</subscript> be connected subgraph of G. If E(G) = E(G<subscript>1</subscript>)∪E(G<subscript>2</subscript>)∪ … ∪E(G<subscript>n</subscript>) and E(G<subscript>i</subscript>) ∩ E(G<subscript>j</subscript>) = ø for any i ≠ j, then (G<subscript>1</subscript>, G<subscript>2</subscript>, G<subscript>3</subscript>,…, G<subscript>n</subscript>) is a decomposition of G. The even star decomposition (S<subscript>2</subscript>, S<subscript>4</subscript>,…, S<subscript>2t</subscript>) of a complate bipartite graph K<subscript>m,n</subscript>, where S<subscript>i</subscript> is a star with i vertices of degree 1, has been studied by Merley and Goldy in 2016. In this paper we study an odd star decomposition (S<subscript>1</subscript>, S<subscript>3</subscript>, S<subscript>5</subscript>,…, S<subscript>2t-1</subscript>) of a complete bipartite graph K<subscript>m,n</subscript> when 1 ≤ m ≤ 5. [ABSTRACT FROM AUTHOR]
- Subjects :
- BIPARTITE graphs
COMPLETE graphs
Subjects
Details
- Language :
- English
- ISSN :
- 0094243X
- Volume :
- 2215
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- AIP Conference Proceedings
- Publication Type :
- Conference
- Accession number :
- 142604044
- Full Text :
- https://doi.org/10.1063/5.0000521