Back to Search Start Over

A novel residual graph convolution deep learning model for short-term network-based traffic forecasting.

Authors :
Zhang, Yang
Cheng, Tao
Ren, Yibin
Xie, Kun
Source :
International Journal of Geographical Information Science; May2020, Vol. 34 Issue 5, p969-995, 27p
Publication Year :
2020

Abstract

Short-term traffic forecasting on large street networks is significant in transportation and urban management, such as real-time route guidance and congestion alleviation. Nevertheless, it is very challenging to obtain high prediction accuracy with reasonable computational cost due to the complex spatial dependency on the traffic network and the time-varying traffic patterns. To address these issues, this paper develops a residual graph convolution long short-term memory (RGC-LSTM) model for spatial-temporal data forecasting considering the network topology. This model integrates a new graph convolution operator for spatial modelling on networks and a residual LSTM structure for temporal modelling considering multiple periodicities. The proposed model has few parameters, low computational complexity, and a fast convergence rate. The framework is evaluated on both the 10-min traffic speed data from Shanghai, China and the 5-min Caltrans Performance Measurement System (PeMS) traffic flow data. Experiments show the advantages of the proposed approach over various state-of-the-art baselines, as well as consistent performance across different datasets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13658816
Volume :
34
Issue :
5
Database :
Complementary Index
Journal :
International Journal of Geographical Information Science
Publication Type :
Academic Journal
Accession number :
142554588
Full Text :
https://doi.org/10.1080/13658816.2019.1697879