Back to Search Start Over

Essential Oil-Based Design and Development of Novel Anti-Candida Azoles Formulation.

Authors :
Hamdy, Rania
Fayed, Bahgat
Hamoda, Alshaimaa M.
Rawas-Qalaji, Mutasem
Haider, Mohamed
Soliman, Sameh S. M.
Jeliazkov, Valtcho
Isman, Murray B.
Chemat, Farid
Bankova, Vassya
Radulović, Niko
Source :
Molecules; 3/15/2020, Vol. 25 Issue 6, p1463, 1p
Publication Year :
2020

Abstract

Candida is the most common fungal class, causing both superficial and invasive diseases in humans. Although Candida albicans is the most common cause of fungal infections in humans, C. auris is a new emergent serious pathogen causing complications similar to those of C. albicans. Both C. albicans and C. auris are associated with high mortality rates, mainly because of their multidrug-resistance patterns against most available antifungal drugs. Although several compounds were designed against C. albicans, very few or none were tested on C. auris. Therefore, it is urgent to develop novel effective antifungal drugs that can accommodate not only C. albicans, but also other Candida spp., particularly newly emergent one, including C. auris. Inspired by the significant broad-spectrum antifungal activities of the essential oil cuminaldehyde and the reported wide incorporation of azoles in the antifungal drugs, a series of compounds (UoST1-11) was designed and developed. The new compounds were designed to overcome the toxicity of the aldehyde group of cuminaldehyde and benefit from the antifungal selectivity of azoles. The new developed UoST compounds showed significant anti-Candida activities against both Candida species. The best candidate compound, UoST5, was further formulated into polymeric nanoparticles (NPs). The new formula, UoST5-NPs, showed similar activities to the nanoparticles-free drug, while providing only 25% release after 24 h, maintainng prolonged activity up to 48 h and affording no toxicity. In conclusion, new azole formulations with significantly enhanced activities against C. albicans and C. auris, while maintaining prolonged action and no toxicities at lower concentrations, were developed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
25
Issue :
6
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
142502122
Full Text :
https://doi.org/10.3390/molecules25061463