Back to Search
Start Over
Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study.
- Source :
- Magnetochemistry; 2018, Vol. 4 Issue 4, p1-17, 17p
- Publication Year :
- 2018
-
Abstract
- Here we report a series of 1-phenyl-5-substituted 2,6-di(pyrazol-3-yl)pyridine complexes with iron(II) ion found in a high spin state in solids (according to magnetochemistry) and in solution (according to NMR spectroscopy), providing experimental evidence for it being an intramolecular effect induced by the phenyl groups. According to X-ray diffraction, the high spin locking of the metal ion is a result of its highly distorted coordination environment (with a very low 'twist' angle atypical of 2,6-di(pyrazol-3-yl)pyridine complexes), which remains this way in complexes with different substituents and counterions, in a diamagnetic zinc(II) analogue and in their solutions. Three possible reasons behind it, including additional coordination with the phenyl group, energy penalty incurred by its rotation or intramolecular stacking interactions, are addressed experimentally. [ABSTRACT FROM AUTHOR]
- Subjects :
- PYRIDINE
INTRAMOLECULAR forces
PHENYL group
SPIN crossover
X-ray diffraction
Subjects
Details
- Language :
- English
- ISSN :
- 23127481
- Volume :
- 4
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Magnetochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 142467807
- Full Text :
- https://doi.org/10.3390/magnetochemistry4040046