Back to Search Start Over

Solid State Fluorination on the Minute Scale: Synthesis of WO3−xFx with Photocatalytic Activity.

Authors :
Lange, Martin Alexander
Krysiak, Yaşar
Hartmann, Jens
Dewald, Georg
Cerretti, Giacomo
Tahir, Muhammad Nawaz
Panthöfer, Martin
Barton, Bastian
Reich, Tobias
Zeier, Wolfgang G.
Mondeshki, Mihail
Kolb, Ute
Tremel, Wolfgang
Source :
Advanced Functional Materials; 3/24/2020, Vol. 30 Issue 13, p1-13, 13p
Publication Year :
2020

Abstract

Solid state reactions are notoriously slow, because the rate‐limiting step is diffusion of atoms or ions through reactant, intermediate, and product crystalline phases. This requires days or even weeks of high temperature treatment, consuming large amounts of energy. Metal oxides are particularly difficult to react, because they have high melting points. The study reports a high‐speed solid state fluorination of WO3 with Teflon to the oxyfluorides WO3–xFx on a minute (<10 min) scale by spark plasma sintering, a technique that is used typically for a high‐speed consolidation of powders. Automated electron diffraction analysis reveals an orthorhombic ReO3‐type structure of WO3–xFx with F atom disorder as demonstrated by 19F magic angle spinning nuclear magnetic resonance spectroscopy. The potential of this new approach is demonstrated by the following results. i) Mixed‐ valent tungsten oxide fluorides WO3–xFx with high F content (0 < x < 0.65) are obtained as metastable products in copious amounts within minutes. ii) The spark plasma sintering technique yields WO3–xFx nanoparticles with high photocatalytic activity, whereas the corresponding bulk phases obtained by conventional solid‐state (ampoule) reactions have no photocatalytic activity. iii) The catalytic activity is caused by the microstructure originating from the processing by spark plasma sintering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
30
Issue :
13
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
142423090
Full Text :
https://doi.org/10.1002/adfm.201909051