Back to Search
Start Over
Defining aerosol layer height for UVAI interpretation using aerosol vertical distributions characterized by MERRA-2.
- Source :
- Atmospheric Chemistry & Physics Discussions; 2/25/2020, p1-36, 36p
- Publication Year :
- 2020
-
Abstract
- Aerosol vertical distributions are important for aerosol radiative forcing assessments and atmospheric remote sensing research. From our perspective, the aerosol layer height (ALH) is one of the major concerns in quantifying aerosol absorption from the ultra-violet aerosol index (UVAI). The UVAI has a global daily record since 1978, whereas a corresponding ALH data set is still limited. In this paper, we attempted to construct such an ALH data set from aerosol extinction profiles provided by the MERRA-2 aerosol reanalysis, meanwhile we evaluated them, together with several satellite ALH products in terms of the UVAI sensitivity to ALH. In the first part of this paper, we derived ALHs from the MERRA-2 aerosol profiles by four definitions. Through the sensitivity studies, we found that the definition of top boundary aerosol layer height (H<subscript>aer</subscript><superscript>t</superscript>) is more robust to the changes in extinction profile properties than others. The spatial and temporal variation of H<subscript>aer</subscript><superscript>t</superscript> are also well associated with the major aerosol sources and the atmospheric dynamics. In the second part, we further evaluated the UVAI altitude dependence on the MERRA-2 ALH as well as several satellite ALH. Among all the satellite ALH products in this paper, the correlation between the TROPOMI oxygen (O<subscript>2</subscript>) A-band ALH and UVAI, and that between the GOME-2 absorbing aerosol layer height (AAH) and UVAI are in agreement with our a-priori knowledge that the altitude dependence of UVAI increases with aerosol loadings. The correlation between the MERRA-2 H<subscript>aer</subscript><superscript>t</superscript> and UVAI also matches well with what we found from observational data sets. This implies the top boundary of the aerosol layer derived from MERRA-2 can be an alternative in case there is no observational ALH data available for quantitively aerosol absorption from UVAI and other UVAI-related applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16807367
- Database :
- Complementary Index
- Journal :
- Atmospheric Chemistry & Physics Discussions
- Publication Type :
- Academic Journal
- Accession number :
- 141966028
- Full Text :
- https://doi.org/10.5194/acp-2020-39