Back to Search
Start Over
The MRCC program system: Accurate quantum chemistry from water to proteins.
- Source :
- Journal of Chemical Physics; 2/21/2020, Vol. 152 Issue 7, p1-18, 18p, 1 Color Photograph, 5 Charts, 3 Graphs
- Publication Year :
- 2020
-
Abstract
- MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller–Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 152
- Issue :
- 7
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 141883146
- Full Text :
- https://doi.org/10.1063/1.5142048