Back to Search Start Over

Automatic local resolution-based sharpening of cryo-EM maps.

Authors :
Ramírez-Aportela, Erney
Vilas, Jose Luis
Glukhova, Alisa
Melero, Roberto
Conesa, Pablo
Martínez, Marta
Maluenda, David
Mota, Javier
Jiménez, Amaya
Vargas, Javier
Marabini, Roberto
Sexton, Patrick M
Carazo, Jose Maria
Sorzano, Carlos Oscar S
Source :
Bioinformatics; 2/1/2020, Vol. 36 Issue 3, p765-772, 8p
Publication Year :
2020

Abstract

Motivation Recent technological advances and computational developments have allowed the reconstruction of Cryo-Electron Microscopy (cryo-EM) maps at near-atomic resolution. On a typical workflow and once the cryo-EM map has been calculated, a sharpening process is usually performed to enhance map visualization, a step that has proven very important in the key task of structural modeling. However, sharpening approaches, in general, neglects the local quality of the map, which is clearly suboptimal. Results Here, a new method for local sharpening of cryo-EM density maps is proposed. The algorithm, named LocalDeblur , is based on a local resolution-guided Wiener restoration approach of the original map. The method is fully automatic and, from the user point of view, virtually parameter-free, without requiring either a starting model or introducing any additional structure factor correction or boosting. Results clearly show a significant impact on map interpretability, greatly helping modeling. In particular, this local sharpening approach is especially suitable for maps that present a broad resolution range, as is often the case for membrane proteins or macromolecules with high flexibility, all of them otherwise very suitable and interesting specimens for cryo-EM. To our knowledge, and leaving out the use of local filters, it represents the first application of local resolution in cryo-EM sharpening. Availability and implementation The source code (LocalDeblur) can be found at https://github.com/I2PC/xmipp and can be run using Scipion (http://scipion.cnb.csic.es) (release numbers greater than or equal 1.2.1). Supplementary information Supplementary data are available at Bioinformatics online. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13674803
Volume :
36
Issue :
3
Database :
Complementary Index
Journal :
Bioinformatics
Publication Type :
Academic Journal
Accession number :
141770087
Full Text :
https://doi.org/10.1093/bioinformatics/btz671