Back to Search Start Over

Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility.

Authors :
Li, Chongyang
McManus, Francis P.
Plutoni, Cédric
Pascariu, Cristina Mirela
Nelson, Trent
Alberici Delsin, Lara Elis
Emery, Gregory
Thibault, Pierre
Source :
Nature Communications; 2/11/2020, Vol. 11 Issue 1, p1-14, 14p
Publication Year :
2020

Abstract

The protein inhibitor of activated STAT1 (PIAS1) is an E3 SUMO ligase that plays important roles in various cellular pathways. Increasing evidence shows that PIAS1 is overexpressed in various human malignancies, including prostate and lung cancers. Here we used quantitative SUMO proteomics to identify potential substrates of PIAS1 in a system-wide manner. We identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was SUMOylated by PIAS1 at Lys-439 and Lys-445 residues. VIM SUMOylation was necessary for its dynamic disassembly and cells expressing a non-SUMOylatable VIM mutant showed a reduced level of migration. Our approach not only enables the identification of E3 SUMO ligase substrates but also yields valuable biological insights into the unsuspected role of PIAS1 and VIM SUMOylation on cell motility. PIAS1 is an E3 SUMO ligase involved in various cellular processes. Here, the authors use quantitative proteomics to identify potential PIAS1 substrates in human cells and elucidate the biological consequences of PIAS1-mediated SUMOylation of vimentin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
141680518
Full Text :
https://doi.org/10.1038/s41467-020-14581-w