Back to Search Start Over

Effects of the Helmholtz Resonator on the Hartmann Whistle Operating at a High Nozzle Pressure Ratio.

Authors :
Jong, Y.-S.
Kim, Ch.-J.
Yun, Ch.-Y.
Source :
Journal of Applied Mechanics & Technical Physics; Nov2019, Vol. 60 Issue 6, p989-995, 7p
Publication Year :
2019

Abstract

A numerical simulation is carried out to investigate the effect of the Helmholtz resonator capacity on the Hartmann whistle operating at high values of the nozzle pressure ratio using the turbulence model. The results of the present numerical simulations are compared to experimental data. The simulation results show that the frequency and amplitude of the Hartmann whistle with the Helmholtz resonator are obviously lower as compared to the conventional Hartmann whistle. Moreover, the Mach number contours and streamlines indicate that the Helmholtz resonator does not affect the shock-cell structure between the nozzle and the cavity, and the Hartmann whistle with the Helmholtz resonator has a. jet regurgitant mode that is different from the Hartmann whistle with a. straight resonator. The diameter of the Helmholtz resonator is an important factor affecting the fundamental frequency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218944
Volume :
60
Issue :
6
Database :
Complementary Index
Journal :
Journal of Applied Mechanics & Technical Physics
Publication Type :
Academic Journal
Accession number :
141545208
Full Text :
https://doi.org/10.1134/S0021894419060026