Back to Search
Start Over
The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders.
- Source :
- PLoS Genetics; 1/24/2020, Vol. 16 Issue 1, p1-17, 17p
- Publication Year :
- 2020
-
Abstract
- The genetic architecture of the small and isolated Greenlandic population is advantageous for identification of novel genetic variants associated with cardio-metabolic traits. We aimed to identify genetic loci associated with body mass index (BMI), to expand the knowledge of the genetic and biological mechanisms underlying obesity. Stage 1 BMI-association analyses were performed in 4,626 Greenlanders. Stage 2 replication and meta-analysis were performed in additional cohorts comprising 1,058 Yup'ik Alaska Native people, and 1,529 Greenlanders. Obesity-related traits were assessed in the stage 1 study population. We identified a common variant on chromosome 11, rs4936356, where the derived G-allele had a frequency of 24% in the stage 1 study population. The derived allele was genome-wide significantly associated with lower BMI (beta (SE), -0.14 SD (0.03), p = 3.2x10<superscript>-8</superscript>), corresponding to 0.64 kg/m<superscript>2</superscript> lower BMI per G allele in the stage 1 study population. We observed a similar effect in the Yup'ik cohort (-0.09 SD, p = 0.038), and a non-significant effect in the same direction in the independent Greenlandic stage 2 cohort (-0.03 SD, p = 0.514). The association remained genome-wide significant in meta-analysis of the Arctic cohorts (-0.10 SD (0.02), p = 4.7x10<superscript>-8</superscript>). Moreover, the variant was associated with a leaner body type (weight, -1.68 (0.37) kg; waist circumference, -1.52 (0.33) cm; hip circumference, -0.85 (0.24) cm; lean mass, -0.84 (0.19) kg; fat mass and percent, -1.66 (0.33) kg and -1.39 (0.27) %; visceral adipose tissue, -0.30 (0.07) cm; subcutaneous adipose tissue, -0.16 (0.05) cm, all p<0.0002), lower insulin resistance (HOMA-IR, -0.12 (0.04), p = 0.00021), and favorable lipid levels (triglyceride, -0.05 (0.02) mmol/l, p = 0.025; HDL-cholesterol, 0.04 (0.01) mmol/l, p = 0.0015). In conclusion, we identified a novel variant, where the derived G-allele possibly associated with lower BMI in Arctic populations, and as a consequence also leaner body type, lower insulin resistance, and a favorable lipid profile. Author summary: The risk of developing obesity is strongly affected by lifestyle, particularly diet and level of physical activity, but also by genetic predisposition. Knowledge about the genes predisposing to obesity can inform about biological processes underlying this condition, and possibly identify targets for obesity treatment. In the present study, we take advantage of the genetic architecture of the Greenlandic population to identify genetic variants associated with alterations in body-mass index, as a measure of obesity. By examining more than 100,000 genetic variants in 4,626 Greenlanders we identify a specific variant, rs4936356, where the derived G-allele was associated with lower body-mass index, lower insulin resistance, and favorable lipid levels. We verified the association with body-mass index in a combined analysis including two additional Arctic cohorts. These results contribute to the understanding of the genetic predisposition to obesity, however, further studies are required to replicate these findings and to identify the gene through which the rs4936356 variant is affecting body-mass index. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15537390
- Volume :
- 16
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- PLoS Genetics
- Publication Type :
- Academic Journal
- Accession number :
- 141382599
- Full Text :
- https://doi.org/10.1371/journal.pgen.1008544