Back to Search Start Over

Track Uncertainty in High-Resolution HWRF Ensemble Forecasts of Hurricane Joaquin.

Authors :
ALAKA JR., GHASSAN J.
XUEJIN ZHANG
SUNDARARAMAN G. GOPALAKRISHNAN
ZHAN ZHANG
MARKS, FRANK D.
ATLAS, ROBERT
Source :
Weather & Forecasting; Dec2019, Vol. 34 Issue 6, p1889-1908, 20p
Publication Year :
2019

Abstract

Hurricane Joaquin (2015) was characterized by high track forecast uncertainty when it approached the Bahamas from 29 September 2015 to 1 October 2015, with 5-day track predictions ranging from landfall in the United States to east of Bermuda. The source of large track spread in Joaquin forecasts is investigated using an ensemble prediction system (EPS) based on the Hurricane Weather Research and Forecasting (HWRF) Model. For the first time, a high-resolution analysis of an HWRF-based EPS is performed to isolate the factors that control tropical cyclone (TC) track uncertainty. Differences in the synoptic-scale environment, the TC vortex structure, and the TC location are evaluated to understand the source of track forecast uncertainty associated with Joaquin, especially at later lead times when U.S. landfall was possible. EPS members that correctly propagated Joaquin into the central North Atlantic are compared with members that incorrectly predicted U.S. landfall. Joaquin track forecasts were highly dependent on the evolution of the environment, including weak atmospheric steering flow near the Bahamas and three synoptic-scale systems: a trough over North America, a ridge to the northeast of Joaquin, and an upper-tropospheric trough to the east of Joaquin. Differences in the steering flow were associated with perturbations of the synoptic-scale environment at the model initialization time. Ultimately, members that produced a more progressive midlatitude synoptic-scale pattern had reduced track errors. Joaquin track forecast uncertainty was not sensitive to the TC vortex structure or the initial TC position. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08828156
Volume :
34
Issue :
6
Database :
Complementary Index
Journal :
Weather & Forecasting
Publication Type :
Academic Journal
Accession number :
141273700
Full Text :
https://doi.org/10.1175/WAF-D-19-0028.1