Back to Search
Start Over
Agile Satellite Mission Planning via Task Clustering and Double-Layer Tabu Algorithm.
- Source :
- CMES-Computer Modeling in Engineering & Sciences; 2020, Vol. 122 Issue 1, p235-257, 23p
- Publication Year :
- 2020
-
Abstract
- Satellite observation schedule is investigated in this paper. A mission planning algorithm of task clustering is proposed to improve the observation efficiency of agile satellite. The newly developed method can make the satellite observe more targets and therefore save observation resources. First, for the densely distributed target points, a preprocessing scheme based on task clustering is proposed. The target points are clustered according to the distance condition. Second, the local observation path is generated by Tabu algorithm in the inner layer of cluster regions. Third, considering the scatter and cluster sets, the global observation path is obtained by adopting Tabu algorithm in the outer layer. Simulation results show that the algorithm can effectively reduce the task planning time of large-scale point targets while ensuring the optimal solution quality. [ABSTRACT FROM AUTHOR]
- Subjects :
- ALGORITHMS
TASKS
MATHEMATICAL optimization
TABU search algorithm
COMPUTER scheduling
Subjects
Details
- Language :
- English
- ISSN :
- 15261492
- Volume :
- 122
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- CMES-Computer Modeling in Engineering & Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 141225675
- Full Text :
- https://doi.org/10.32604/cmes.2020.08070