Back to Search Start Over

S‐Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C‐Alkylation.

Authors :
McKean, Iain J. W.
Sadler, Joanna C.
Cuetos, Anibal
Frese, Amina
Humphreys, Luke D.
Grogan, Gideon
Hoskisson, Paul A.
Burley, Glenn A.
Source :
Angewandte Chemie International Edition; 12/2/2019, Vol. 58 Issue 49, p17583-17588, 6p
Publication Year :
2019

Abstract

A tandem enzymatic strategy to enhance the scope of C‐alkylation of small molecules via the in situ formation of S‐adenosyl methionine (SAM) cofactor analogues is described. A solvent‐exposed channel present in the SAM‐forming enzyme SalL tolerates 5′‐chloro‐5′‐deoxyadenosine (ClDA) analogues modified at the 2‐position of the adenine nucleobase. Coupling SalL‐catalyzed cofactor production with C‐(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C‐(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants that influence C‐alkylation provides the basis to develop a late‐stage enzymatic platform for the preparation of high value small molecules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
58
Issue :
49
Database :
Complementary Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
139841668
Full Text :
https://doi.org/10.1002/anie.201908681