Back to Search
Start Over
In-Vitro Simulation of the Blood Flow in an Axisymmetric Abdominal Aortic Aneurysm.
- Source :
- Applied Sciences (2076-3417); Nov2019, Vol. 9 Issue 21, p4560, 16p
- Publication Year :
- 2019
-
Abstract
- Featured Application: To build an in-vitro physiological model, which, gaining insights from the distinctive features of the advanced image analysis technique employed for kinematic data retrieval, turns out to be suitable to investigate the correlation of the local hemodynamic characteristics (velocity and vorticity distributions, pressure and WSS fields, and, eventually, turbulence) with both the abdominal aortic aneurysm (AAA) progression and the rupture location. The perspective of this research is to build an ad-hoc methodology suitable to provide an accurate spatio-temporal measure of the WSS distribution and evolution during the cardiac cycle and correlate it with intra-luminal thrombus (ILT) deposition and possibly with rupture events. We investigated the blood flow patterns and the hemodynamics associated with an abdominal aortic aneurysm detected in an in vitro measurement campaign performed in a laboratory model of an aneurysm with rigid walls and an axisymmetric shape. Experiments were run in steady flow conditions and by varying the Reynolds number in the range 410 < Re < 2650. High spatial and temporal resolution 2D optical measurements of the velocity field were obtained through a particle tracking technique known as Hybrid Lagrangian Particle Tracking. Conversely to classical Particle Image Velocimetry, both the fluid particle trajectories and the instantaneous and time-averaged velocity fields are provided without constraints on the grid size and very close to the vessel boundary. All the most relevant quantities needed to investigate the flow features were evaluated, and in particular, we focused on the wall shear stress distribution both in the healthy aortic portion and within the aneurysm. Results show that the recirculation zone in correspondence of the cavity moves downstream, and this displacement is found to increase with Re. Very low wall shear stress values are recovered in correspondence of the aneurysmal cavity, while a sharp peak occurs in correspondence of the reattachment point. In agreement with the literature data, the peak value is found to decrease with Re and to be about equal to twice the upstream value. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 9
- Issue :
- 21
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 139691164
- Full Text :
- https://doi.org/10.3390/app9214560