Back to Search Start Over

Antioxidant Peptides from the Protein Hydrolysate of Spanish Mackerel (Scomberomorous niphonius) Muscle by in Vitro Gastrointestinal Digestion and Their In Vitro Activities.

Authors :
Zhao, Guo-Xu
Yang, Xiu-Rong
Wang, Yu-Mei
Zhao, Yu-Qin
Chi, Chang-Feng
Wang, Bin
Source :
Marine Drugs; Sep2019, Vol. 17 Issue 9, p531-531, 1p
Publication Year :
2019

Abstract

For the full use of Spanish mackerel (Scomberomorous niphonius) muscle to produce antioxidant peptides, the proteins of Spanish mackerel muscle were separately hydrolyzed under five kinds of enzymes and in vitro gastrointestinal digestion, and antioxidant peptides were isolated from the protein hydrolysate using ultrafiltration and multiple chromatography methods. The results showed that the hydrolysate (SMPH) prepared using in vitro GI digestion showed the highest degree of hydrolysis (27.45 ± 1.76%) and DPPH radical scavenging activity (52.58 ± 2.68%) at the concentration of 10 mg protein/mL among the six protein hydrolysates, and 12 peptides (SMP-1 to SMP-12) were prepared from SMPH. Among them, SMP-3, SMP-7, SMP-10, and SMP-11 showed the higher DPPH radical scavenging activities and were identified as Pro-Glu-Leu-Asp-Trp (PELDW), Trp-Pro-Asp-His-Trp (WPDHW), and Phe-Gly-Tyr-Asp-Trp-Trp (FGYDWW), and Tyr-Leu-His-Phe-Trp (YLHFW), respectively. PELDW, WPDHW, FGYDWW, and YLHFW showed high scavenging activities on DPPH radical (EC<subscript>50</subscript> 1.53, 0.70, 0.53, and 0.97 mg/mL, respectively), hydroxyl radical (EC<subscript>50</subscript> 1.12, 0.38, 0.26, and 0.67 mg/mL, respectively), and superoxide anion radical (EC<subscript>50</subscript> 0.85, 0.49, 0.34, and 1.37 mg/mL, respectively). Moreover, PELDW, WPDHW, FGYDWW, and YLHFW could dose-dependently inhibit lipid peroxidation in the linoleic acid model system and protect plasmid DNA (pBR322DNA) against oxidative damage induced by H<subscript>2</subscript>O<subscript>2</subscript> in the tested model systems. In addition, PELDW, WPDHW, FGYDWW, and YLHFW could retain their high activities when they were treated under a low temperature (<60 °C) and a moderate pH environment (pH 5–9). These present results indicate that the protein hydrolysate, fractions, and isolated peptides from Spanish mackerel muscle have strong antioxidant activity and might have the potential to be used in health food products. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16603397
Volume :
17
Issue :
9
Database :
Complementary Index
Journal :
Marine Drugs
Publication Type :
Academic Journal
Accession number :
139008112
Full Text :
https://doi.org/10.3390/md17090531