Back to Search Start Over

Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure.

Authors :
Stone, Nicholas P.
Demo, Gabriel
Agnello, Emily
Kelch, Brian A.
Source :
Nature Communications; 10/2/2019, Vol. 10 Issue 1, pN.PAG-N.PAG, 1p
Publication Year :
2019

Abstract

The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly. Viral capsids need to protect the genome against harsh environmental conditions and cope with high internal pressure from the packaged genome. Here, the authors determine the structure of the thermostable phage P74-26 capsid at 2.8-Å resolution and identify features underlying enhanced capsid capacity and structural stability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
10
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
138911118
Full Text :
https://doi.org/10.1038/s41467-019-12341-z