Back to Search
Start Over
Weighted power means of q‐rung orthopair fuzzy information and their applications in multiattribute decision making.
- Source :
- International Journal of Intelligent Systems; Nov2019, Vol. 34 Issue 11, p2835-2862, 28p
- Publication Year :
- 2019
-
Abstract
- Weighted power means with weights and exponents serving as their parameters are generalizations of arithmetic means. Taking into account decision makers' flexibility in decision making, each attribute value is usually expressed by a q‐rung orthopair fuzzy value (q‐ROFV, q≥1), where the former indicates the support for membership, the latter support against membership, and the sum of their qth powers is bounded by one. In this paper, we propose the weighted power means of q‐rung orthopair fuzzy values to enrich and flourish aggregations on q‐ROFVs. First, the q‐rung orthopair fuzzy weighted power mean operator is presented, and its boundedness is precisely characterized in terms of the power exponent. Then, the q‐rung orthopair fuzzy ordered weighted power mean operator is introduced, and some of its fundamental properties are investigated in detail. Finally, a novel multiattribute decision making method is explored based on developed operators under the q‐rung orthopair fuzzy environment. A numerical example is given to illustrate the feasibility and validity of the proposed approach, and it is shown that the power exponent is an index suggesting the degree of the optimism of decision makers. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08848173
- Volume :
- 34
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- International Journal of Intelligent Systems
- Publication Type :
- Academic Journal
- Accession number :
- 138791946
- Full Text :
- https://doi.org/10.1002/int.22167