Back to Search Start Over

Discrete Littlewood-Paley-Stein Characterization and L2 Atomic Decomposition of Local Hardy Spaces.

Authors :
Ding, Wei
Jiang, Li Xin
Zhu, Yue Ping
Source :
Acta Mathematica Sinica; Oct2019, Vol. 35 Issue 10, p1681-1695, 15p
Publication Year :
2019

Abstract

Usually, the condition that T is bounded on L<superscript>2</superscript>(ℝ<superscript>n</superscript>) is assumed to prove the boundedness of an operator T on a Hardy space. With this assumption, one only needs to prove the uniformly boundness of T on atoms, since T(f)= ∑<subscript>i</subscript> λ<subscript>i</subscript>T(a<subscript>i</subscript>), provided that f = ∑<subscript>i</subscript> λ<subscript>i</subscript>a<subscript>i</subscript> in L<superscript>2</superscript> (ℝ<superscript>n</superscript>), where a<subscript>i</subscript> is an L<superscript>2</superscript> atom of this Hardy space. So far, the L<superscript>2</superscript> atomic decomposition of local Hardy spaces h<superscript>p</superscript>(ℝ<superscript>n</superscript>), 0 > p ≤ 1, hasn't been established. In this paper, we will solve this problem, and also show that h<superscript>p</superscript>(ℝ<superscript>n</superscript>) can also be characterized by discrete Littlewood-Paley functions. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
HARDY spaces
ATOMS
PROBLEM solving

Details

Language :
English
ISSN :
14398516
Volume :
35
Issue :
10
Database :
Complementary Index
Journal :
Acta Mathematica Sinica
Publication Type :
Academic Journal
Accession number :
138653162
Full Text :
https://doi.org/10.1007/s10114-019-8532-0