Back to Search
Start Over
Discrete Littlewood-Paley-Stein Characterization and L2 Atomic Decomposition of Local Hardy Spaces.
- Source :
- Acta Mathematica Sinica; Oct2019, Vol. 35 Issue 10, p1681-1695, 15p
- Publication Year :
- 2019
-
Abstract
- Usually, the condition that T is bounded on L<superscript>2</superscript>(ℝ<superscript>n</superscript>) is assumed to prove the boundedness of an operator T on a Hardy space. With this assumption, one only needs to prove the uniformly boundness of T on atoms, since T(f)= ∑<subscript>i</subscript> λ<subscript>i</subscript>T(a<subscript>i</subscript>), provided that f = ∑<subscript>i</subscript> λ<subscript>i</subscript>a<subscript>i</subscript> in L<superscript>2</superscript> (ℝ<superscript>n</superscript>), where a<subscript>i</subscript> is an L<superscript>2</superscript> atom of this Hardy space. So far, the L<superscript>2</superscript> atomic decomposition of local Hardy spaces h<superscript>p</superscript>(ℝ<superscript>n</superscript>), 0 > p ≤ 1, hasn't been established. In this paper, we will solve this problem, and also show that h<superscript>p</superscript>(ℝ<superscript>n</superscript>) can also be characterized by discrete Littlewood-Paley functions. [ABSTRACT FROM AUTHOR]
- Subjects :
- HARDY spaces
ATOMS
PROBLEM solving
Subjects
Details
- Language :
- English
- ISSN :
- 14398516
- Volume :
- 35
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Acta Mathematica Sinica
- Publication Type :
- Academic Journal
- Accession number :
- 138653162
- Full Text :
- https://doi.org/10.1007/s10114-019-8532-0