Back to Search Start Over

Individualized pattern recognition for detecting mind wandering from EEG during live lectures.

Authors :
Dhindsa, Kiret
Acai, Anita
Wagner, Natalie
Bosynak, Dan
Kelly, Stephen
Bhandari, Mohit
Petrisor, Brad
Sonnadara, Ranil R.
Source :
PLoS ONE; 9/12/2019, Vol. 14 Issue 9, p1-30, 30p
Publication Year :
2019

Abstract

Neural correlates of mind wandering: The ability to detect mind wandering as it occurs is an important step towards improving our understanding of this phenomenon and studying its effects on learning and performance. Current detection methods typically rely on observable behaviour in laboratory settings, which do not capture the underlying neural processes and may not translate well into real-world settings. We address both of these issues by recording electroencephalography (EEG) simultaneously from 15 participants during live lectures on research in orthopedic surgery. We performed traditional group-level analysis and found neural correlates of mind wandering during live lectures that are similar to those found in some laboratory studies, including a decrease in occipitoparietal alpha power and frontal, temporal, and occipital beta power. However, individual-level analysis of these same data revealed that patterns of brain activity associated with mind wandering were more broadly distributed and highly individualized than revealed in the group-level analysis. Mind wandering detection: To apply these findings to mind wandering detection, we used a data-driven method known as common spatial patterns to discover scalp topologies for each individual that reflects their differences in brain activity when mind wandering versus attending to lectures. This approach avoids reliance on known neural correlates primarily established through group-level statistics. Using this method for individual-level machine learning of mind wandering from EEG, we were able to achieve an average detection accuracy of 80–83%. Conclusions: Modelling mind wandering at the individual level may reveal important details about its neural correlates that are not reflected when using traditional observational and statistical methods. Using machine learning techniques for this purpose can provide new insight into the varieties of neural activity involved in mind wandering, while also enabling real-time detection of mind wandering in naturalistic settings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
9
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
138582156
Full Text :
https://doi.org/10.1371/journal.pone.0222276