Back to Search Start Over

Evolutionary Many-Objective Algorithm Using Decomposition-Based Dominance Relationship.

Authors :
Chen, Lei
Liu, Hai-Lin
Tan, Kay Chen
Cheung, Yiu-Ming
Wang, Yuping
Source :
IEEE Transactions on Cybernetics; Dec2019, Vol. 49 Issue 12, p4129-4139, 11p
Publication Year :
2019

Abstract

Decomposition-based evolutionary algorithms have shown great potential in many-objective optimization. However, the lack of theoretical studies on decomposition methods has hindered their further development and application. In this paper, we first theoretically prove that weight sum, Tchebycheff, and penalty boundary intersection decomposition methods are essentially interconnected. Inspired by this, we further show that highly customized dominance relationship can be derived from decomposition for any given decomposition vector. A new evolutionary algorithm is then proposed by applying the customized dominance relationship with adaptive strategy to each subpopulation of multiobjective to multiobjective framework. Experiments are conducted to compare the proposed algorithm with five state-of-the-art decomposition-based evolutionary algorithms on a set of well-known scaled many-objective test problems with 5 to 15 objectives. Simulation results have shown that the proposed algorithm can make better use of the decomposition vectors to achieve better performance. Further investigations on unscaled many-objective test problems verify the robust and generality of the proposed algorithm. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21682267
Volume :
49
Issue :
12
Database :
Complementary Index
Journal :
IEEE Transactions on Cybernetics
Publication Type :
Academic Journal
Accession number :
138551227
Full Text :
https://doi.org/10.1109/TCYB.2018.2859171