Back to Search Start Over

Completability and optimal factorization norms in tensor products of Banach function spaces.

Authors :
Calabuig, J. M.
Fernández-Unzueta, M.
Galaz-Fontes, F.
Sánchez-Pérez, E. A.
Source :
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales / RACSAM; Oct2019, Vol. 113 Issue 4, p3513-3530, 18p
Publication Year :
2019

Abstract

Given σ -finite measure spaces (Ω 1 , Σ 1 , μ 1) and (Ω 2 , Σ 2 , μ 2) , we consider Banach spaces X 1 (μ 1) and X 2 (μ 2) , consisting of L 0 (μ 1) and L 0 (μ 2) measurable functions respectively, and study when the completion of the simple tensors in the projective tensor product X 1 (μ 1) ⊗ π X 2 (μ 2) is continuously included in the metric space of measurable functions L 0 (μ 1 ⊗ μ 2) . In particular, we prove that the elements of the completion of the projective tensor product of L p -spaces are measurable functions with respect to the product measure. Assuming certain conditions, we finally show that given a bounded linear operator T : X 1 (μ 1) ⊗ π X 2 (μ 2) → E (where E is a Banach space), a norm can be found for T to be bounded, which is 'minimal' with respect to a given property (2-rectangularity). The same technique may work for the case of n-spaces. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15787303
Volume :
113
Issue :
4
Database :
Complementary Index
Journal :
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales / RACSAM
Publication Type :
Periodical
Accession number :
138396979
Full Text :
https://doi.org/10.1007/s13398-019-00711-7