Back to Search Start Over

Impact of Vegetation on Bed Load Transport Rate and Bedform Characteristics.

Authors :
Yang, J. Q.
Nepf, H. M.
Source :
Water Resources Research; Jul2019, Vol. 55 Issue 7, p6109-6124, 16p
Publication Year :
2019

Abstract

The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy, kt, in vegetated channels from channel average velocity U and vegetation volume fraction ϕ was validated for mobile sediment beds. Second, using data from several studies, the predicted kt was shown to be a good predictor of bed load transport rate, Qs, allowing Qs to be predicted from U and ϕ for vegetated channels. The control of Qs by kt was explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated with kt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasing ϕ, again suggesting that vegetation facilitated the formation of sheet flow. Key Points: Turbulent kinetic energy and bed load transport rate were predicted from velocity and vegetation volume fractionVegetation‐generated turbulence impacts the bed load transport rate by controlling the number of grains in motionVegetation of sufficient volume fraction suppressed bedform formation [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431397
Volume :
55
Issue :
7
Database :
Complementary Index
Journal :
Water Resources Research
Publication Type :
Academic Journal
Accession number :
138087981
Full Text :
https://doi.org/10.1029/2018WR024404