Back to Search
Start Over
Measuring the ionisation fraction in a jet from a massive protostar.
- Source :
- Nature Communications; 8/9/2019, Vol. 10 Issue 1, pN.PAG-N.PAG, 1p
- Publication Year :
- 2019
-
Abstract
- It is important to determine if massive stars form via disc accretion, like their low-mass counterparts. Theory and observation indicate that protostellar jets are a natural consequence of accretion discs and are likely to be crucial for removing angular momentum during the collapse. However, massive protostars are typically rarer, more distant and more dust enshrouded, making observational studies of their jets more challenging. A fundamental question is whether the degree of ionisation in jets is similar across the mass spectrum. Here we determine an ionisation fraction of ~5–12% in the jet from the massive protostar G35.20-0.74N, based on spatially coincident infrared and radio emission. This is similar to the values found in jets from lower-mass young stars, implying a unified mechanism of shock ionisation applies in jets across most of the protostellar mass spectrum, up to at least ~10 solar masses. The ionisation fraction of protostellar jets is key to establish their true energetics. Here, the authors determine it in a jet from a high-mass young stellar object, using multi-wavelengths observations, confirming that the ionising mechanism giving rise to the radio emission originates from shocks. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 10
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 137992243
- Full Text :
- https://doi.org/10.1038/s41467-019-11595-x