Back to Search Start Over

Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci.

Authors :
Bell, Jordana
Ward, Kirsten
Mangino, Massimo
Hysi, Pirro G.
Spector, Timothy D.
Bell, Christopher G.
Wei Yuan
Roos, Leonie
Jun Wang
Acton, Richard J.
Fei Gao
Yudong Xia
Source :
Nature Communications; 1/2/2018, Vol. 9 Issue 1, p1-13, 13p
Publication Year :
2018

Abstract

Integrating epigenetic data with genome-wide association study (GWAS) results can reveal disease mechanisms. The genome sequence itself also shapes the epigenome, with CpG density and transcription factor binding sites (TFBSs) strongly encoding the DNA methylome. Therefore, genetic polymorphism impacts on the observed epigenome. Furthermore, large genetic variants alter epigenetic signal dosage. Here, we identify DNA methylation variability between GWAS-SNP risk and non-risk haplotypes. In three subsets comprising 3128 MeDIPseq peripheral-blood DNA methylomes, we find 7173 consistent and functionally enriched Differentially Methylated Regions. 36.8% can be attributed to common non-SNP genetic variants. CpG-SNPs, as well as facilitative TFBS-motifs, are also enriched. Highlighting their functional potential, CpG-SNPs strongly associate with allele-specific DNase-I hypersensitivity sites. Our results demonstrate strong DNA methylation allelic differences driven by obligatory or facilitative genetic effects, with potential direct or regional diseaserelated repercussions. These allelic variations require disentangling from pure tissue-specific modifications, may influence array studies, and imply underestimated population variability in current reference epigenomes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
9
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
137986825
Full Text :
https://doi.org/10.1038/s41467-017-01586-1