Back to Search
Start Over
Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles †.
- Source :
- Applied Sciences (2076-3417); 8/1/2019, Vol. 9 Issue 15, p2959, 14p
- Publication Year :
- 2019
-
Abstract
- The focus of this work is on the relationship between the quantitative structural characterization of bimetallic Au-Pd nanoparticles dispersed in an amorphous polymer matrix and their catalytic activity in the direct synthesis of hydrogen peroxide (DS reaction). Resonant X-ray powder diffraction with synchrotron radiation was employed to probe selectively and to reveal fine details of the structure of bimetallic nanoparticles embedded in the support. The semi-quantitative analysis of the resonant X-ray powdered diffraction data, made on a large number of metal nanoparticles, shows that in one of the polymer-supported Au-Pd catalyst for the DS reaction (P75) featured by an overall molar Pd/Au of about 5.54, the smallest metal nanoparticles (MNPs), which account for more than 99.9% of the total MNPs number and for more than 95% of the metal surface, are formed by practically pure palladium. The relative number of bimetallic alloyed nanoparticles is very small (less than 4 × 10<superscript>2</superscript> ppm) and they contribute to only about 2% of the total metal surface. In a second gold-enriched catalyst (P50) with an overall molar Pd/Au of 1.84, the proportion of the bimetallic alloyed nanoparticles increased to about 97% and they account for about 99% of the metal surface. As a result of the metal intermixing, the catalytic productivity for the DS reaction increased from 97 to 109 mmol<subscript>H<subscript>2</subscript>O<subscript>2</subscript></subscript>/mol<subscript>H2</subscript>, owing to the gold-promotion of palladium. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 9
- Issue :
- 15
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 137965412
- Full Text :
- https://doi.org/10.3390/app9152959