Back to Search
Start Over
Graphene oxide-molybdenum oxide composite with improved hole transport in bulk heterojunction solar cells.
- Source :
- AIP Advances; Jul2019, Vol. 9 Issue 7, pN.PAG-N.PAG, 10p
- Publication Year :
- 2019
-
Abstract
- Solution processed hole transport layer based on graphene oxide (GO) and molybdenum oxide (MoO<subscript>3</subscript>) composite in bulk heterojunction organic solar cell (OSC) devices offer low cost, improved performance compared to conventional organic solar cells. Here, we have made a study comparing the power conversion efficiency (PCE) of this composite to the pristine GO and MoO<subscript>3</subscript> as a hole transport layer in the organic photovoltaics. The devices with the composite shows optimized performance with PCE of ∼ 5.1%, while the pristine GO and MoO<subscript>3</subscript> display 1.59% and 2.5%, respectively. These differences are attributed to the lower short circuit current (J<subscript>sc</subscript>) and thereby lower fill factor (FF) with respect to the GO and MoO<subscript>3</subscript>. Nevertheless, the composite based devices exhibits improved optical absorption and photoluminescence quenching as compared to pristine interface layer. This study intends to highlight efficient modulation of the interface barrier of hole transport layer which allow us to give faster transport and extraction of the charge carrier efficiently at the electrodes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21583226
- Volume :
- 9
- Issue :
- 7
- Database :
- Complementary Index
- Journal :
- AIP Advances
- Publication Type :
- Academic Journal
- Accession number :
- 137828508
- Full Text :
- https://doi.org/10.1063/1.5095702