Back to Search Start Over

Semi-Automated Data Labeling for Activity Recognition in Pervasive Healthcare.

Authors :
Cruz-Sandoval, Dagoberto
Beltran-Marquez, Jessica
Garcia-Constantino, Matias
Gonzalez-Jasso, Luis A.
Favela, Jesus
Lopez-Nava, Irvin Hussein
Cleland, Ian
Ennis, Andrew
Hernandez-Cruz, Netzahualcoyotl
Rafferty, Joseph
Synnott, Jonathan
Nugent, Chris
Source :
Sensors (14248220); Jul2019, Vol. 19 Issue 14, p3035-3035, 1p
Publication Year :
2019

Abstract

Activity recognition, a key component in pervasive healthcare monitoring, relies on classification algorithms that require labeled data of individuals performing the activity of interest to train accurate models. Labeling data can be performed in a lab setting where an individual enacts the activity under controlled conditions. The ubiquity of mobile and wearable sensors allows the collection of large datasets from individuals performing activities in naturalistic conditions. Gathering accurate data labels for activity recognition is typically an expensive and time-consuming process. In this paper we present two novel approaches for semi-automated online data labeling performed by the individual executing the activity of interest. The approaches have been designed to address two of the limitations of self-annotation: (i) The burden on the user performing and annotating the activity, and (ii) the lack of accuracy due to the user labeling the data minutes or hours after the completion of an activity. The first approach is based on the recognition of subtle finger gestures performed in response to a data-labeling query. The second approach focuses on labeling activities that have an auditory manifestation and uses a classifier to have an initial estimation of the activity, and a conversational agent to ask the participant for clarification or for additional data. Both approaches are described, evaluated in controlled experiments to assess their feasibility and their advantages and limitations are discussed. Results show that while both studies have limitations, they achieve 80% to 90% precision. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
19
Issue :
14
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
137661185
Full Text :
https://doi.org/10.3390/s19143035