Back to Search Start Over

Improved Teaching-Learning-Based Optimization Algorithm for Modeling NOX Emissions of a Boiler.

Authors :
Xia Li
Peifeng Niu
Jianping Liu
Qing Liu
Source :
CMES-Computer Modeling in Engineering & Sciences; 2018, Vol. 117 Issue 1, p29-57, 29p
Publication Year :
2018

Abstract

An improved teaching-learning-based optimization (I-TLBO) algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception (PELM), and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler. In the I-TLBO algorithm, there are four major highlights. Firstly, a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population. Secondly, two kinds of angles in Bloch sphere are generated by using cube chaos mapping. Thirdly, an adaptive control parameter is added into the teacher phase to speed up the convergent speed. And then, according to actual teaching-learning phenomenon of a classroom, students learn some knowledge not only by their teacher and classmates, but also by themselves. Therefore, a self-study strategy by using Gauss mutation is introduced after the learning phase to improve the exploration ability. Finally, we test the performance of the I-TLBO-PELM model. The experiment results show that the proposed model has better regression precision and generalization ability than eight other models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15261492
Volume :
117
Issue :
1
Database :
Complementary Index
Journal :
CMES-Computer Modeling in Engineering & Sciences
Publication Type :
Academic Journal
Accession number :
137579956
Full Text :
https://doi.org/10.31614/cmes.2018.04020