Back to Search Start Over

The role of epicuticular waxes on foliar metal transfer and phytotoxicity in edible vegetables: case of Brassica oleracea species exposed to manufactured particles.

Authors :
Dappe, Vincent
Dumez, Sylvain
Bernard, Fabien
Hanoune, Benjamin
Cuny, Damien
Dumat, Camille
Sobanska, Sophie
Source :
Environmental Science & Pollution Research; Jul2019, Vol. 26 Issue 20, p20092-20106, 15p
Publication Year :
2019

Abstract

The rapid industrialization and urbanization of intra- and peri-urban areas at the world scale are responsible for the degradation of the quality of edible crops, because of their contamination with airborne pollutants. Their consumption could lead to serious health risks. In this work, we aim to investigate the phytotoxicity induced by foliar transfer of atmospheric particles of industrial/urban origin. Leaves of cabbage plants (Brassica oleracea var. Prover) were contaminated with metal-rich particles (PbSO<subscript>4</subscript> CuO and CdO) of micrometer size. A trichloroacetic acid (TCA) treatment was used to inhibit the synthesis of the epicuticular waxes in order to investigate their protective role against metallic particles toxicity. Besides the location of the particles on/in the leaves by microscopic techniques, photosynthetic activity measurements, genotoxicity assessment, and quantification of the gene expression have been studied for several durations of exposure (5, 10, and 15 days). The results show that the depletion of epicuticular waxes has a limited effect on the particle penetration in the leaf tissues. The stomatal openings appear to be the main pathway of particles entry inside the leaf tissues, as demonstrated by the overexpression of the BolC.CHLI1 gene. The effects of particles on the photosynthetic activity are limited, considering only the photosynthetic F<subscript>v</subscript>/F<subscript>m</subscript> parameter. The genotoxic effects were significant for the contaminated TCA-treated plants, especially after 10 days of exposure. Still, the cabbage plants are able to implement repair mechanisms quickly, and to thwart the physiological effects induced by the particles. Finally, the foliar contamination by metallic particles induces no serious damage to DNA, as observed by monitoring the BolC.OGG1 gene. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
26
Issue :
20
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
137206458
Full Text :
https://doi.org/10.1007/s11356-018-3210-9