Back to Search Start Over

A new constitutive model for prediction of springback in sheet metal forming.

Authors :
E., Appiah
M., Jain
Ghosh, S.
Castro, J.C.
Lee, J.K.
Source :
AIP Conference Proceedings; 2004, Vol. 712 Issue 1, p1651-1657, 7p
Publication Year :
2004

Abstract

With advances in computer capabilities, cost of sheet metal forming has being reducing mainly due to the reduction of trial and error approaches. At the moment, a complete process can be simulated on computer and appropriate forming conditions optimized before actual industrial forming process is carried out. While formability predictions have improved, the problem of springback exhibited by most metal, including aluminum alloy AA6111-T4, after forming persist and often leads to significant part fit-up problems during assembly. There are a number of factors that affect springback and perhaps the most significant one is constitutive equation. In this paper springback predicted by six advanced kinematic models are evaluated. In addition an improved constitutive kinematic model is presented. It is shown that by adding stress correction term (SCT) to Armstrong-Frederick model a relatively simple and yet accurate stress prediction could be obtained. The SCT was developed with the assumption that the yield surface remains convex, yield center depends on translation, size and shape variations of the yield surface. The model is implemented in a commercial finite element code (ABAQUS/Standard) via its user material interface (UMAT). Numerical simulations of U-bending were performed using automotive aluminum sheet material (AA6111-T4). It was noted that springback has inverse relationship with residual stress. © 2004 American Institute of Physics [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
712
Issue :
1
Database :
Complementary Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
13720352
Full Text :
https://doi.org/10.1063/1.1766766