Back to Search Start Over

On the Oikawa and Arakawa Theorems for Graphs.

Authors :
Mednykh, A. D.
Mednykh, I. A.
Nedela, R.
Source :
Proceedings of the Steklov Institute of Mathematics; Apr2019 Supplement 1, Vol. 304 Issue 1, pS133-S140, 8p
Publication Year :
2019

Abstract

The present paper is devoted to the further development of the discrete theory of Riemann surfaces, which was started in the papers by M. Baker and S. Norine and their followers at the beginning of the century. This theory considers finite graphs as analogs of Riemann surfaces and branched coverings of graphs as holomorphic mappings. The genus of a graph is defined as the rank of its fundamental group. The main object of investigation in the paper is automorphism groups of a graph acting freely on the set of half-edges of the graph. These groups are discrete analogs of groups of conformal automorphisms of a Riemann surface. The celebrated Hurwitz theorem (1893) states that the order of the group of conformal automorphisms of a compact Riemann surface of genus g > 1 does not exceed 84(g — 1). Later, K. Oikawa and T. Arakawa refined this bound in the case of groups that fix several finite sets of prescribed cardinalities. This paper provides proofs of discrete versions of the mentioned theorems. In addition, a discrete analog of the E. Bujalance and G. Gromadzki theorem improving one of Arakawa's results is obtained. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00815438
Volume :
304
Issue :
1
Database :
Complementary Index
Journal :
Proceedings of the Steklov Institute of Mathematics
Publication Type :
Academic Journal
Accession number :
136861477
Full Text :
https://doi.org/10.1134/S0081543819020147