Back to Search Start Over

Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes.

Authors :
Fiorotti, Jéssica
Menna-Barreto, Rubem Figueiredo Sadok
Gôlo, Patrícia Silva
Coutinho-Rodrigues, Caio Junior Balduino
Bitencourt, Ricardo Oliveira Barbosa
Spadacci-Morena, Diva Denelle
Angelo, Isabele da Costa
Bittencourt, Vânia Rita Elias Pinheiro
Source :
Frontiers in Physiology; 5/29/2019, pN.PAG-N.PAG, 17p
Publication Year :
2019

Abstract

Metarhizium is an entomopathogenic fungus widely employed in the biological control of arthropods. Hemocytes present in the hemolymph of invertebrates are the cells involved in the immune response of arthropods. Despite this, knowledge about Rhipicephalus microplus hemocytes morphological aspects as well as their role in response to the fungal infection is scarce. The present study aimed to analyze the hemocytes of R. microplus females after Metarhizium robertsii infection, using light and electron microscopy approaches associated with the cytotoxicity evaluation. Five types of hemocytes (prohemocytes, spherulocytes, plasmatocytes, granulocytes, and oenocytoids) were described in the hemolymph of uninfected ticks, while only prohemocytes, granulocytes, and plasmatocytes were observed in fungus-infected tick females. Twenty-four hours after the fungal infection, only granulocytes and plasmatocytes were detected in the transmission electron microscopy analysis. Hemocytes from fungus-infected tick females showed several cytoplasmic vacuoles with different electron densities, and lipid droplets in close contact to low electron density vacuoles, as well as the formation of autophagosomes and subcellular material in different stages of degradation could also be observed. M. robertsii propagules were more toxic to tick hemocytes in the highest concentration tested (1.0 × 10<superscript>8</superscript> conidia mL<superscript>−1</superscript>). Interestingly, the lowest fungus concentration did not affect significantly the cell viability. Microanalysis showed that cells granules from fungus-infected and uninfected ticks had similar composition. This study addressed the first report of fungal cytotoxicity analyzing ultrastructural effects on hemocytes of R. microplus infected with entomopathogenic fungi. These results open new perspectives for the comprehension of ticks physiology and pathology, allowing the identification of new targets for the biological control. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664042X
Database :
Complementary Index
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
136717018
Full Text :
https://doi.org/10.3389/fphys.2019.00654