Back to Search Start Over

Climate Data Records from Meteosat First Generation Part III: Recalibration and Uncertainty Tracing of the Visible Channel on Meteosat-2–7 Using Reconstructed, Spectrally Changing Response Functions.

Authors :
Rüthrich, Frank
John, Viju O.
Roebeling, Rob A.
Quast, Ralf
Govaerts, Yves
Woolliams, Emma R.
Schulz, Jörg
Source :
Remote Sensing; May2019, Vol. 11 Issue 10, p1165-1165, 1p
Publication Year :
2019

Abstract

This paper presents a new Fundamental Climate Data Record (FCDR) for the visible (VIS) channel of the Meteosat Visible and Infrared Imager (MVIRI), with pixel-level metrologically traceable uncertainties and error covariance estimates. MVIRI has flown onboard Meteosat First Generation (MFG) satellites between 1982 and 2017. It has served the weather forecasting community with measurements of "visible", "infra-red" and "water vapour" radiance in near real-time. The precision of the pre-launch sensor spectral response function (SRF) characterisation, particularly of the visible band of this sensor type, improved considerably with time, resulting in higher quality radiances towards the end of the MFG program. Despite these improvements, the correction of the degradation of this sensor has remained a challenging task and previous studies have found the SRF degradation to be faster in the blue than in the near-infrared part of the spectrum. With these limitations, the dataset cannot be immediately applied in climate science. In order to provide a data record that is suited for climate studies, the Horizon 2020 project "FIDelity and Uncertainty in Climate-data records from Earth Observation" (FIDUCEO) conducted (1) a thorough metrological uncertainty analysis for each instrument, and (2) a recalibration using enhanced input data such as reconstructed SRFs. In this paper, we present the metrological analysis, the recalibration results and the resulting consolidated FCDR. In the course of this study we were able to trace-back the remaining uncertainties in the calibrated MVIRI reflectances to underlying effects that have distinct physical root-causes and spatial/temporal correlation patterns. SEVIRI and SCIAMACHY reflectances have been used for a validation of the harmonised dataset. The resulting new FCDR is publicly available for climate studies and for the production of climate data records (CDRs) spanning about 35 years. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
11
Issue :
10
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
136710990
Full Text :
https://doi.org/10.3390/rs11101165