Back to Search
Start Over
Solving the Equation $\hbox{div}\, v = F\, \hbox{IN} {\cal C}_0(\open{R}^N, \open{R}^N)$.
- Source :
- Proceedings of the Edinburgh Mathematical Society; Nov2018, Vol. 61 Issue 4, p1055-1061, 7p
- Publication Year :
- 2018
-
Abstract
- In the following note, we focus on the problem of existence of continuous solutions vanishing at infinity to the equation div v = f for f ∈ L <superscript> n </superscript>(ℝ<superscript> n </superscript>) and satisfying an estimate of the type || v ||<subscript>∞</subscript> ⩽ C || f ||<subscript> n </subscript> for any f ∈ L <superscript> n </superscript>(ℝ<superscript> n </superscript>), where C > 0 is related to the constant appearing in the Sobolev–Gagliardo–Nirenberg inequality for functions with bounded variation (BV functions). [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00130915
- Volume :
- 61
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Proceedings of the Edinburgh Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 136611920
- Full Text :
- https://doi.org/10.1017/S0013091518000172