Back to Search Start Over

Solving the Equation $\hbox{div}\, v = F\, \hbox{IN} {\cal C}_0(\open{R}^N, \open{R}^N)$.

Authors :
Moonens, Laurent
Picon, Tiago H.
Source :
Proceedings of the Edinburgh Mathematical Society; Nov2018, Vol. 61 Issue 4, p1055-1061, 7p
Publication Year :
2018

Abstract

In the following note, we focus on the problem of existence of continuous solutions vanishing at infinity to the equation div v = f for f ∈ L <superscript> n </superscript>(ℝ<superscript> n </superscript>) and satisfying an estimate of the type || v ||<subscript>∞</subscript> ⩽ C || f ||<subscript> n </subscript> for any f ∈ L <superscript> n </superscript>(ℝ<superscript> n </superscript>), where C > 0 is related to the constant appearing in the Sobolev–Gagliardo–Nirenberg inequality for functions with bounded variation (BV functions). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00130915
Volume :
61
Issue :
4
Database :
Complementary Index
Journal :
Proceedings of the Edinburgh Mathematical Society
Publication Type :
Academic Journal
Accession number :
136611920
Full Text :
https://doi.org/10.1017/S0013091518000172