Back to Search Start Over

A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection.

Authors :
Casas, Francisco J.
Ortiz, David
Aja, Beatriz
de la Fuente, Luisa
Artal, Eduardo
Ruiz, Rubén
Mirapeix, Jesús M.
Source :
Sensors (14248220); Apr2019, Vol. 19 Issue 8, p1870-1870, 1p
Publication Year :
2019

Abstract

This paper presents a 10 to 20 GHz bandwidth microwave polarimeter demonstrator, based on the implementation of a near-infra-red frequency up-conversion stage that allows both the optical correlation, when operating as a synthesized-image interferometer, and signal detection, when operating as a direct-image instrument. The proposed idea is oriented towards the implementation of ultra-sensitive instruments presenting several dozens or even thousands of microwave receivers operating in the lowest bands of the cosmic microwave background. In this work, an electro-optical back-end module replaces the usual microwave detection stage with Mach–Zehnder modulators for the frequency up-conversion, and an optical stage for the signals correlation and detection at near-infra-red wavelengths (1550 nm). As interferometer, the instrument is able to correlate the signals of large-format instruments, while operating as a direct imaging instrument also presents advantages in terms of the possibility of implementing the optical back end by means of photonic integrated circuits to achieve reductions in cost, weight, size, and power consumption. A linearly polarized input wave, with a variable polar angle, is used as a signal source for laboratory tests. The receiver demonstrator has proved its capabilities of being used as a new microwave-photonic polarimeter for the study of the lowest bands of cosmic microwave background. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
19
Issue :
8
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
136207787
Full Text :
https://doi.org/10.3390/s19081870