Back to Search Start Over

A hybrid silicon-sapphire cryogenic Fabry–Perot cavity using hydroxide catalysis bonding.

Authors :
Yun-Long Sun
Yan-Xia Ye
Xiao-Hui Shi
Zhi-Yuan Wang
Chun-Jie Yan
Lei-Lei He
Ze-Huang Lu
Jie Zhang
Source :
Classical & Quantum Gravity; 5/23/2019, Vol. 36 Issue 10, p1-1, 1p
Publication Year :
2019

Abstract

The third-generation gravitational wave detectors under development will be operating at cryogenic temperature to reduce the thermal noise. Silicon and sapphire are promising candidate materials for the test masses and suspension elements due to their remarkable mechanical and thermal properties at cryogenic temperature. Here we present the performances of the cryogenic thermal cycling and strength testing on hydroxide catalysis bonding between sapphire and silicon. Our results suggest that although these two materials have very different coefficients of thermal expansion, if the flatness and the thermally grown SiO<subscript>2</subscript> oxidation layer on the silicon surface are controlled well, the bonded samples can still survive thermal cycling from room temperature to 5.5 K. A breaking strength of MPa is measured for the bonds between sapphire and silicon with a 190 nm silicon oxidation thickness after cooling cycle. We construct a hybrid sapphire-silicon Fabry–Perot cavity with our bonding technique. The measurement results reveal that the cavity can survive repeated thermal cycling while maintaining a finesse of . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02649381
Volume :
36
Issue :
10
Database :
Complementary Index
Journal :
Classical & Quantum Gravity
Publication Type :
Academic Journal
Accession number :
136141744
Full Text :
https://doi.org/10.1088/1361-6382/ab1889