Back to Search Start Over

On the arithmetic of a family of degree - two K3 surfaces.

Authors :
BOUYER, FLORIAN
COSTA, EDGAR
FESTI, DINO
NICHOLLS, CHRISTOPHER
WEST, MCKENZIE
Source :
Mathematical Proceedings of the Cambridge Philosophical Society; May2019, Vol. 166 Issue 3, p523-542, 20p
Publication Year :
2019

Abstract

Let ℙ denote the weighted projective space with weights (1, 1, 1, 3) over the rationals, with coordinates x , y , z and w ; let X be the generic element of the family of surfaces in ℙ given by X : w<superscript>2</superscript> = x<superscript>6</superscript> + y<superscript>6</superscript> + z<superscript>6</superscript> + tx<superscript>2</superscript>y<superscript>2</superscript>z<superscript>2</superscript>. The surface X is a K3 surface over the function field ℚ(t). In this paper, we explicitly compute the geometric Picard lattice of X, together with its Galois module structure, as well as derive more results on the arithmetic of X and other elements of the family X. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
ARITHMETIC
PROJECTIVE spaces

Details

Language :
English
ISSN :
03050041
Volume :
166
Issue :
3
Database :
Complementary Index
Journal :
Mathematical Proceedings of the Cambridge Philosophical Society
Publication Type :
Academic Journal
Accession number :
135698721
Full Text :
https://doi.org/10.1017/S0305004118000087