Back to Search
Start Over
On the arithmetic of a family of degree - two K3 surfaces.
- Source :
- Mathematical Proceedings of the Cambridge Philosophical Society; May2019, Vol. 166 Issue 3, p523-542, 20p
- Publication Year :
- 2019
-
Abstract
- Let ℙ denote the weighted projective space with weights (1, 1, 1, 3) over the rationals, with coordinates x , y , z and w ; let X be the generic element of the family of surfaces in ℙ given by X : w<superscript>2</superscript> = x<superscript>6</superscript> + y<superscript>6</superscript> + z<superscript>6</superscript> + tx<superscript>2</superscript>y<superscript>2</superscript>z<superscript>2</superscript>. The surface X is a K3 surface over the function field ℚ(t). In this paper, we explicitly compute the geometric Picard lattice of X, together with its Galois module structure, as well as derive more results on the arithmetic of X and other elements of the family X. [ABSTRACT FROM AUTHOR]
- Subjects :
- ARITHMETIC
PROJECTIVE spaces
Subjects
Details
- Language :
- English
- ISSN :
- 03050041
- Volume :
- 166
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Mathematical Proceedings of the Cambridge Philosophical Society
- Publication Type :
- Academic Journal
- Accession number :
- 135698721
- Full Text :
- https://doi.org/10.1017/S0305004118000087