Back to Search Start Over

ERBB2-modulated ATG4B and autophagic cell death in human ARPE19 during oxidative stress.

Authors :
Sheu, Shwu-Jiuan
Chen, Jiunn-Liang
Bee, Youn-Shen
Lin, Shi-Han
Shu, Chih-Wen
Source :
PLoS ONE; 3/14/2019, Vol. 14 Issue 3, p1-13, 13p
Publication Year :
2019

Abstract

Age-related macular degeneration (AMD) is an ocular disease with retinal degeneration. Retinal pigment epithelium (RPE) degeneration is mainly caused by long-term oxidative stress. Kinase activity could be either protective or detrimental to cells during oxidative stress; however, few reports have described the role of kinases in oxidative stress. In this study, high-throughput screening of kinome siRNA library revealed that erb-b2 receptor tyrosine-protein kinase 2 (ERBB2) knockdown reduced reactive oxygen species (ROS) production in ARPE-19 cells during oxidative stress. Silencing ERBB2 caused an elevation in microtubule associated protein light chain C3-II (MAP1LC3B-II/I) conversion and sequesterone (SQSTM)1 protein level. ERBB2 deprivation largely caused an increase in autophagy-regulating protease (ATG4B) expression, a protease that negatively recycles MAP1LC3-II at the fusion step between the autophagosome and lysosome, suggesting ERBB2 might modulate ATG4B for autophagy induction in oxidative stress-stimulated ARPE-19 cells. ERBB2 knockdown also caused an accumulation of nuclear factor erythroid 2-related factor 2 (NRF2) and enhanced its transcriptional activity. In addition, ERBB2 ablation or treatment with autophagy inhibitors reduced oxidative-induced cytotoxic effects in ARPE-19 cells. Furthermore, ERBB2 silencing had little or no additive effects in ATG5/7-deficient cells. Taken together, our results suggest that ERBB2 may play an important role in modulating autophagic RPE cell death during oxidative stress, and ERBB2 may be a potential target in AMD prevention. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
3
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
135310489
Full Text :
https://doi.org/10.1371/journal.pone.0213932