Back to Search Start Over

Enhanced Power Sharing Transient With Droop Controllers for Multithree-Phase Synchronous Electrical Machines.

Authors :
Galassini, Alessandro
Costabeber, Alessandro
Degano, Michele
Gerada, Chris
Tessarolo, Alberto
Menis, Roberto
Source :
IEEE Transactions on Industrial Electronics; Jul2019, Vol. 66 Issue 7, p5600-5610, 11p
Publication Year :
2019

Abstract

This paper presents a droop-based distributed control strategy for multithree-phase machines that provides augmented controllability during power sharing transients. The proposed strategy is able to mitigate the mutual interactions among different sets of windings without controlling any subspace variable, also offering a modular and redundant design. On the contrary, in a centralized configuration, subspaces would be controlled using the vector space decomposition, but fault tolerance and reliability levels required by the stricter regulations and policies expected in future transportation systems would not be satisfied. The proposed method is analytically compared against the state-of-the-art power sharing technique and equivalent models and control design procedures have been derived and considered in the comparison. Uncontrolled power sharing transients and their effects on mutual couplings among isolated sets of windings have been compared against the proposed regulated ones. Experimental results on a 22-kW nine-phase multithree-phase synchronous machine rig validate the design procedures showing good agreement with the expected performances. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
66
Issue :
7
Database :
Complementary Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
135140700
Full Text :
https://doi.org/10.1109/TIE.2018.2868029